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1. INTRODUCTIOIO 

1.1 Objectives 

Light-weight f u e l  ba t te r ies  capable of producing large 

quantit ies of energy appear feasible  for  space applications. H i g h -  

performance light-weight electrode systems are an essen t i a l  part of 

these batteries. Work canpleted previuusly(l), under HASA C o n t r a c t  

HAS 3-2786, showed t h a t  American Cyanamid AB-40 electrodes (40 q Pt/cm2) 

give high and sustained performance i n  hydrogen-mgen matrix f u e l  cells 

including those of ba t te ry  size;  this performance is substant ia l ly  higher 

than t h a t  of American Cyanamid AB-1 electrodes which contain lese platintan 

( 9  mg Pt/cm2). 

AB40 electrodes could be incorporated in zt 2 kw fuel battery whoere 

It was calculated that  a t  temperatures up t o  100°C, t he  

weight per net power (including all auxi l iar ies  except f u e l  and tankage) 

w o u l d  be approximately 50 lb/ku. 

A detailed investigation a t  temperatures up t o  100°C showed 

t h a t  i n i t i a l  performance generally increases w i t h  increasing temperature, 

pressure, and e lec t ro ly te  (KOH) concentration. F'urthermore, preliminary 

studies demonstrated that substant ia l  increases i n  i n i t i a l  perfararance 

can be obtained by operatiag a t  higher temperatures (140'C) and ICOH 

concentrations (65$), than are  generally employed i n  matrix fuel ce l l s .  

Under  these conditions current densit ies as high as 100, 400 and 800 =/em2 

a t  working voltages of 1.0, 0.9 and 0.8 v, respectively, were achieved 

i n  short  term tests. 

Accordingly the objective of the present contract is t o  

invest igate  and recommend preferred corrditions, at 100-200"~  under 

which AB-40 electrodes would be capable of sustained high performance 

i n  a t o t a l  m o d u l e  having a weight- to-per  r a t i o  substant ia l ly  lwer 

than those presently available fo r  space environment. 



- 2 -  

1.2 scope 

The scope of work t o  be done by American Cyanamid Company 

dur ing  t h e  Contract year i s  outlined i n  t h e  Schedule of Work presented 

i n  the  F i rs t  Quarterly Report( l e  
Work i n  the  th i rd  quarter of the contract was devoted t o  

I n  Task I-A, the  in i t ia l  performance and Tasks I -A ,  I-B, a d  III. 

short  term s t a b i l i t y  of a ceria-PTFE matrix were evaluated. 

m o d e l  of pressure-temperatureXOH concentration effects on i n i t i a l  per- 

formance was developed f r o m  a cmputer analysis of data reported i n  t h e  

second quarter. 

product water removed at each electrode was investigated. I n  Task I-B, 

small cell  l i f e  tests w e r e  conducted, primarily w i t h  asbestos matrices. 

Large cel l  l i f e  t e s t ing  w a s  continued (Task 111). 

An empirical 

The effect on i n i t i a l  perfarmance of t h e  f rac t ion  of 
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1. An experimental. Ceria-PTFE ma-rix vas found t o  have a 

combination of l c r w  resistivity (2.0 ohm-cm a t  100'C a& 5% KOH) and 

high bubble pressure (16-20 psig) superior t o  a l l  Baatrices evaluated 

earlier. As reported p r e r i ~ u e l y ( ~ ) ,  t h i s  type of matrix also has 

good corrosion resis tance t o  KOE at temperatures up t o  at  least 150% 

though not at 200'C. 

performance of the  electrode obtained with t h i s  matrix at 100 arm/02  

was  0.98 v, 1-03 v and 1.07 v a t  100'C, 150'C and 20O0C, respectively. 

A t  400 ma/cm2 the maximum i n i t i a l  voltages were 0.87 v, 0.88 v aad 

0.96 v at these same respective tenqxratures. 

A t  atmospheric pressure, t he  laaximum initial 

2. Several short  term tests w i t h  the  Ceria-PrPE matrix 

were conducted, in one-inch ce l l s ,  mostly at 150'C anl 100 ma/un2. 

Rapid voltage decline rates (15-400 m/lOO hrs  . ) occurred during 

operation w i t h  either dry gases OT with one gas humidified 8Ub8tantidly. 

Stable operation was demonstrated i n  one run at  l5O.C far 20 hours 

at  a voltage of 1.00 v, though not for longer periods. 

of both inlet gases may be necessary for long term s t ab i l i t y .  

ceria-= matrix is t o  be included i n  the life-testing program. 

Humidif'ication 

The 

3. An empirical m o d e l  for t h e  depedence of initial 

performance on temperature ( 1OO-l5O0C), pressure, (0-60 psig),  

a d  KOB concentration (30-75s) was f i t t e d  t o  experimental data  

reported during the Second Quarter. 

of ce l l  voltage t o  within + 5-15 mv at 100-h00 me/cm2, though not 

at 600-1000 ma/cm2. 

The m o d e l  pennits predictions 

- 
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The effects of the operating variables on i n i t i a l  performance 

predicted by the model confirm the preliminary conclusions, based on 

d i r e c t  analysis of the  data, which were reported during t h e  second 

qparter(3). 

initial performance is predicted a t  l5OoC, 45-60 psig and, depending 

on the  current density, 60-75$ KOH. 

a re  1.10 v, 1.04 v, 0.99 v and 0.95 v a t  100, 200, 300 and 400 =/an2, 

respectively. 

For the  region of operating variables studied, highest 

Highest predicted working voltages 

Matrices which are less r e s i s t i v e  or thinner than t h a t  used 

t o  obtain the  data (16-18 m i l  ACCO-If Asbestos) might increase t h i s  

perfonname by a8 much as 30 mv a t  100 ma/cm2 and 100 mv a t  400 ma/cm2. 

4. The effect of the f i ac t ion  of water removed a t  each 

electrode on i n i t i a l  performance was studied w i t h  an ACCO-I1 Asbestos 

matrix operating on dry  gases. 

voltages were obtained by removing a l l  product water a t  t h e  hydrogen 

electrode. 

when two-thirds or more of the  product water was removed a t  t he  oxygen 

electrode. 

of t h i s  variable. 

A t  100-200 ma/cm2, highest i n i t i a l  

By contrast ,  highest performance a t  600-1000 ma/cm2 occurred 

A t  300-400 ma/cm2 the  i n i t i a l  performance was independent 

Task I-B 

1. M o s t  small c e l l  l i f e  tests w e r e  carr ied out i n  2-inch 

c e l l s  a t  lOO'C, 5 6  KOH, and atmospheric pressure. 

humidified reactant gases were employed. 

Both dry and 
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2. Stable electrode operation WBS obtalned for m a r e  than 

1200 hours at a current density of 100 ma/cm2, using either ACCO-I 

Asbestos or Fuel C e l l  Asbestos as the matrix. Quintem Asbestoe has 

yielded stable performance for at least 429 hours. C e l l  voltages at  

100 ma/cm2 were generally i n  the range 0.924.9k v. 

3. A t  200 ma/cm2, pressure tests w e r e  m n  at 15 psig on dry 

gases using either ACCO-I Asbestos or h e 1  C e l l  Asbestos as the matrix. 

Thus far, performance stability has a t  best been borderline. Further 

pressure tests are t o  be ~ I .U  with humidified gases. 

4. Stable electrode perfonnance wan also achieved far mure 

than 1200 hours at  300 ma/cm2 with ACCO-I Asbestos as the matrix. 

C e l l  voltages were m o s t l y  0.86-0.88 V. 

5. ACCO-II Asbestos ani Fuel Cell Aebestos have not yet 

yielded stable prformance at 300 ms/cm2. This may be due t o  the 

r e l a t ive ly  high electrolyte  concentration gradients which developed 

across these matrices. 

6. Long term performance a t  100=300 =/em2 was stable vhen 

t h e  overal l  KOH concentration gradient i n  the cel l  was belaw 6-7$ loDH. 

Unstable operation occurred when this gradient was 7-15s. 

The concentration gradient increased with increaeing 

current density and decreased w i t h  decressing density of t he  matrix 

i n  the order Fuel C e l l  Asbestos (2.5-15$ KOH), ACC0-n Asbestos 

(O.5-lO.O$ KDH), and ACCO-I Asbestos (0.5-7.5$ KOH). 

densi ty  ( 3 0 0  -/an2) hmidi f ica t ion  of t he  inlet  gases reduced the 

concentration gradient by 3-4$ KOH. 

A t  high current 
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7. Long term s t a b i l i t y  has not yet been attained a t  400 -/an2. 

However, stable operation obtained far a limited period (320 hours) offers 

promise far long term s t a b i l i t y  a t  t h i s  current density. 

8. Tests at  W5OC confirmed previous resu l t s  that  asbestos 

and PTFE-asbestos matrices are unsuitable for long term s t a b i l i t y  at t h i s  

temperature . 
9. !t!wo tests at l5O.C w i t h  a commercial porous PTFE as t h e  

matrix innnediately developed cross leakage of gas ard were termineted. 

Task 111 

1. Testing of battery-size electrodes was conducted i n  a 

6-inch cell at 100°C,  50$ KOH and atmospheric pressure. 

ACCO-I Asbestos. 

The matrix was 

The removal of product water siBIulated that  of a 

battery system with a recycle hydrogen stream and deadended oxygen. 

Stable performance was achieved a t  300 =/a2 far 740 hours a t  a voltage 

of 0.85-0.87 v and a voltage decline rate of 1.2 mv/lOO hours. Inadvertent 

overwetting during 740-850 hours caused a sharp voltage decline. 

t h i s  t h e  total voltage decline (49 mv) after 1000 hours of operation passed 

Despite 

contract specifications. 
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3. 

3.1 

SMALL cEI;L TESTING 

Investigation of Matrix Materials : Ceria-PTFE 

An experimental proprietary c e r i a - n m  matrix containing 95% 

cer ia  by weight (85% by volume) is under investigation. Previously 

reported corrosion data(3) indicate tha t  t h i s  type of matrix may be 

sui table  for sustained operation at temperatures up to at least 15OoC, 

though not at 200OC. Tbis matrix has a bubble pressure of 16-20 psig, 

nearly as high as t h a t  of ACCO-I1 Asbestos and Fuel C e l l  Asbestos 

(20 t o  30+ psig) , and considerably higher than t h a t  of ACCO-I Asbestos 

(1-3 psig) ,  

atmospheric. 

It should, therefore,  be usef'ul at pressures above 

The matrix as prepared is saturated with w a t e r  and has a 

void volume of approximately 80%. 

suffers a loss  i n  porosity which is not fully recoverable on 

re-equilibration i n  KOH. 

w e t  matrices are not dried, but are t ransferred d i rec t ly  t o  the 

50% KOH solution, 

t h i s  manner, as calculated from a void volume of 802, is 0.86 g KOH 

solution/g dry matrix. 

On drying, the  matrix shrinhs and 

To avoid th i s  loss  in porosity, the  vater- 

The maJtimtm electrolyte  loading obtainable i n  

cell resistance and i n i t i a l  electrode performance with 

18-20 m i l  thick ceria-PTFE matrices w e r e  studied at 100-200°C. 

loadings w e r e  varied over the  range 25-100% of t he  maximum, the  lower 

values being obtained by blo t t ing  t h e  W y - l o a d e d  matrix. Table 3-1 

canpares the c e l l  resistance and i n i t i a l  performance of t he  ceria-PTFE 

matrix with t h a t  of asbestos matrices and shows t h e i r  dependence on 

KOH loading. 

KQH 
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A t  100°C and 50% KOH the resistance of t he  ceria-PI"E matrix 

(0.012-0.018 ohm) equalled or was lower than the  same thickness of 

ACCO-I Asbestos (0.018 ohm), and w a s  substant ia l ly  below t h a t  of ACCO-I1 

Asbestos (0.032 ohm) and Fuel C e l l  Asbestos (0.037 ohm). The i n i t i a l  

performance at 100°C improved markedly as t he  KOH loading was reduced 

below the  maximm. A t  maximum loading, 0.75 maximum, and 0.50 e, 
the  i n i t i a l  performance was far below tha t  of asbestos matrices and was 

2 unstable at current densit ies above 100-400 -/an . (This i n s t a b i l i t y  

and the  improvement in performance as the loading was reduced shaw t h a t  

the  electrodes w e r e  overwet at these loadings.) A t  0.25 maxhum load- 

ing, the  perfonaance equalled tha t  of ACCO-I Asbestos at current densi t ies  

up t o  600 ma/= and was signif icant ly  higher than tha t  of ACCO-I1 

Asbestos and Fuel C e l l  Asbestos at current densit ies up t o  800 ma/= . 
2 

2 

2 2 
The working voltage was 0.98 v at 100 ma/= and 0.87 v at 400 ma/= . 

A t  15OoC and 67% KOH the performance was independent of i n i t i a l  

KOH loading over the  range 0.25 maximum-marimtmp at current densi t ies  up 

t o  300 ma/cm2. A t  400-1000 =/a2, the perromance increased s igni f icsn t ly  

as the  loading was decreased without any consistent change in c e l l  

resistance.  

w e r e  1.03 P and 0.88 v respectively. 

2 
The highest working voltages obtained at  100 and 400 ma/- 

A t  20O0C, 75% KOH, and maximum loading the voltages obtained 

a t  100 and 400 ma/- w e r e  respectively 1.07 v and 0.96 V. 

electrode performance was the  same as t h a t  reported 

20O0C with a PTFE-Asbestos matrix. 

2 This i n i t i a l  

at 
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Thus the  ceria-FTFE matrix has a combination of low r e s i s t i v i t y  

(2.0 ohm-cm) and high bubble pressure (16-20 psig) superior t o  t h a t  of 

any of the asbestos matrices evaluated thus  far i n  t h i s  investigation. 

This gives it a poten t ia l  performance advantage over these asbestos 

matrices f o r  operation under pressure. A second poten t ia l  advantage of 

the  ceria-PTFE matrix is i t s  possible use at temperatures substant ia l ly  

above 100°C, the  approximate maximum temperature su i tab le  fo r  asbestos 

matrices(3). This would permit increases i n  the  i n i t i a l  performance. 

Accordingly short  term s t a b i l i t y  tests were run on the ceria- 

The t e s t s  were conducted i n  one-inch c e l l s  at 15OoC, PTF'E matrix. 

67% KOH and 100 ma/cm , f o r  periods of 42-95 hours. 2 The i n i t i a l  KOH 

loading and the humidity of t he  i n l e t  gas streams were varied. 

t e s t s  two th i rds  of the  product water was  removed at the hydrogen 

I n  a l l  

electrode. Results are shown i n  Table 3-2. 

Ini t ia l  voltages ranged mostly irap 1.00 t o  1.03 v. When dry 

gases were employed at i n i t i a l  KOH loadings of 0.50-0.75 maximum, the  

voltage decline rates (152-400 mv/lOO hrs . )  were extremely high ( t e s t s  

7556-181 and -186). In these runs the  c e l l  res is tance rose by 18-26 

milliobms which indicates tha t  portions of t he  electrodes may have dried 

out. 

run with the  inlet hydrogen stream humidifled at 55OC. 

To minimize drying at the hydrogen electrode, t e s t s  7556-194 w a s  

In principle  

t h i s  prevented the KOH concentration at the  hydrogen electrode from 

exceeding 715, which is  9% below the  s o l u b i l i t y  l i m i t  at 150OC. The 

i n l e t  oxygen w a s  humidified only s l i g h t l y  at 25OC. The KOH loading w a s  

0.25 maximum. 

22 mi l l i ohms  and the  voltage declined very rapidly (304 mv/100 hours). 

As with the dry gas runs, t he  c e l l  res is tance rose by 



N rl 

9 
rl 

:: 
9 
rl 

In 
t- 
0 

5: 
0 

0 
t t m  

$4: 
H O  

0 0 

9' 

t m 

rl 
9 

- I n  mc- 
?? 



The most s tab le  short  term operation w a s  obtained by minimizing 

drying at  t he  oxygen electrode (7676-6). 

humidified at 55OC while the i n l e t  hydrogen w a s  humidified only s l i g h t l y  

at  25OC. 

The i n l e t  oxygen stream w a s  

The KOH loading was 0.50 maximum.  During the first 20 hours 

the  c e l l  res is tance increased by only 4 milliohms and the  voltage dropped 

only 3 w. The voltage decline rate w a s  15 mv/100 hours. During the 

next 25 hours the  resistance rose by 40 milliohms and the voltage decline 

r a t e  increased t o  97 mv/100 hours. The test indicated t h a t  subs tan t ia l  

humidification of the  i n l e t  oxygen stream may be necessary f o r  s t a b i l i t y .  

An attempt w a s  made t o  determine whether any KOH-soluble 

impurities i n  the martix might be causing the  voltage declines observed 

i n  these short  term t e s t s .  

i n  70% KOH at 15OoC fo r  100 hours and then washed with water p r i o r  t o  

the  test (7676-20). 

Accordingly, a matrix sample w a s  extracted 

This treatment shrank the matrix somewhat and 

probably w a s  the  cause of a high i n i t i a l  c e l l  res is tance (0.071 ohm) and 

a r e l a t ive ly  low i n i t i a l  voltage (0.979 v) . 
humidifled at 55'C. 

ohms and the  voltage declined rapidly (104 mv/100 hours). 

of these results t o  those for unextracted matrices might indicate  t h a t  

The tes t  w a s  run with oxygen 

During 42 hours the  c e l l  res is tance rose by 27 m i l l i -  

The s imi l a r i t y  

lack of s t a b i l i t y  was not caused by matrix impurities. 

matrix shrinkage caused by the extract ion is  a complicating factor .  

One test (7676-1) w a s  m at 100°C, 50% KOH and 100 m a / c m  

However, the  

2 

on dry gases. 

voltage w a s  0.985 v. 

(40 mv/lOO hours) was high but was considerably below t h a t  of the runs 

made at 150,C with dry gases (7556-181 and -186). 

The KOH loading was 0.25 of the maximum. The i n i t i a l  

During 137 hours the overa l l  voltage decline r a t e  
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The s t a b i l i t y  obtained during 20 hours i n  test 7676-6 is 

encouraging and the ceria PTFE matrix is t o  be included i n  the life- 

t e s t ing  program. The short term t e s t s  indicate t h a t ,  at t h i s  high 

KOH concentration, l oca l  drying i n  the electrodes may be a cause of the  

rapid voltage declines observed. 

with both gases substant ia l ly  humidified. 

as w e l l  as at higher temperatures. 

Accordingly l i f e  tests will be run 

T e s t s  w i l l  be run at 100°C 

3.2 Investigation of Operating Variables 

3.2.1 Rnpirical Models f o r  Temperature-Pressure KOH Concentration E f f e c t s  

Statistically-designed experiments t o  determine the  dependence 

of i n i t i a l  electrode performance on temperature (l0O-15O0C), pressure 

(0-60 psig) and KOH concentration (30-752) were canpleted during the  

Second Quarter(3). 

100-1000 ma/cm2, at different canbinations of the  operating variables. 

Three repl icate  nms were made at a point near the  center of the  design. 

All runs employed ACCO-I1 Asbestos (16-18 mils) as the  matrix.) 

( A  t o t a l  of 27 independent runs w e r e  m a d e ,  at 

In order t o  predict  the  i n i t i a l  voltage at any point in this 

region of the four operating variables, (including current density) tvo 

empirical models were formulated t o  flt the data and computer solutions 

of these models w e r e  obtained. 

3.2.1.1 Direct Model 

A "direct  model" was formulated first by considering directly 

the t o t a l  e f f ec t  of t h e  operating variables on c e l l  voltage. The model 

is  based on a c q l e t e  t h i rd  order equation containing 35 terms with 



constant coefficients. In  order t o  solve f o r  the coeff ic ients ,  e ight  

of t h e  th i rd  order terms were eliminated so t h a t  the number of coefficients 

equals the  number of independent experimental runs. 

i n  equation (1). 

The model is shown 

V = bo + blK + b2P + b3C + b4T + 

+ b K P + b13K C + b14K T 12 

+ bZ3P C + b24P T + b34C T 

+ bul(K l 3  + b222(P 3 

+ bm(K I2P + bU4(K 12T 

+ b221(P 12K + b224(P J2T 

+ b 331 (C ) K 

+ b441 (T I2K. + b442(T 1% 

2 2 
+ b332(C P + b334(C )*T 

+ b124K P T 
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where: V = c e l l  voltage (vo l t s )  

K-45 

l o  

# 

K = -  

@ 
P- 30 

p =-  
lo 
0 
T-125 

25 
T =  

/ 
c-100 

C =  
100 

b = constant coefficient 

/ # 
and C 

/ 

and K , P', T 

(ps ig ) ,  temperature ("C) and current density (ma/cm ). 

are respectively KOH concentration (%I, pressure 
2 

The magnitudes of the coeff ic ients  were estimated fran the 

simultaneous equations generated by the experimental runs. 

of l e a s t  squares was used t o  f ind the set of coeff ic ients  which minimizes 

the sum of the  squared deviations of t h e  observed voltages fram the  

voltages predicted by the equation. The coeff ic ient  values are shown 

i n  Table I of the Appendix. 

deviation of the  ac tua l  voltages f'ran t he  predicted voltages is 10 mv 
2 2 at current densi t ies  of 100-400 ma/m 

Both of these standard deviations are substant ia l ly  higher than the 

experimental e r ro r  ( 4 mv) determined by t h e  rep l ica te  measurements. 

Accordingly, t h i s  model does not f i t  t h e  data w e l l .  

The method 

With t h i s  set of coeff ic ients  the standard 

and 23 m v  at 600-1000 ma/- . 
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3.2.1.2 Indirect  Model 

A bet ter  f i t  of the  data i s  obtained by an "indirect  model" 

which combines an equation for t h e  dependence of c e l l  voltage on all 

of the  operating variables and on c e l l  resistance,with a separate 

equation f o r  the dependence of c e l l  resistance on the  operating variables. 

The voltage equation, (21, i s  a full second order equation 

of the  form. 

V = b + [b K + b2P + b3C + b4T + b5R] 0 1 

+ bll(K ) 2 + bZ2(P 2 + b33(C 2 + b44(T ) 2 + b55(R 2 

+ b  K P  +b13KC +b14KT + b  K R  
12 15 

+ b  P C  + b 2 4 P T  + b  P R  
23  25 

+ b34C + b35C 

+ b  T R  
45 

where R = C e l l  resistance (ohms) and the  other terms are as i n  equation 

(1). 



. 

The magnitudes of the coeff ic ients  vere evaluated, from 

simultaneous equations generated by the experimental data, by the  method 

of l e a s t  squares and a re  shown i n  Table 11 of the  Appendix. 

set of coefficients,  t he  standard deviation of the predicted voltages 

from t h e  observed voltages is  7 mv a t  current densi t ies  of 100-400 mr/cm 

With this 

2 

and 22 mv at 600-1000 malmd. 

The resistance equation i s  a full second order equation i n  

terms of temperature, KOH concentration, and pressure. While i n  

pr inciple  pressure should not affect  c e l l  res is tance it is included as 

a variable because of i t s  apparent e f fec t  on c e l l  resistance i n  the 

experimental runs. The resis tance equation, (31,  has the  fona: 

R = do + [dlK + d2P + d3T 1 + 
( 3 )  

The coefficients were calculated f r a n  t h e  data by the  method of least 

squares and are shown i n  T a l e  I11 of the Appendix. 

deviation of the predicted resistance from the ac tua l  res is tance is 

.0052 ohm. 

The standard 

C e l l  voltages vere then predicted by subs t i tu t ing  the  resistance 

values predicted by equation (31 ,  i r t o  equation (2). 

deviation of these predicted voltages from the  observed voltages is 8 mv 

at 100-400 m a / c m  which i s  substant ia l ly  closer t o  t h e  duplicate 

measurement e r ro r  than tha t  of t he  d i rec t  model. 

The standard 

2 

Accordingly, t h e  ind i rec t  



2 model i s  used f o r  predicting t h e  c e l l  voltage at 100-400 ma/cm . 
The model i s  sa t i s fac tory  i n  t h i s  current density range. 

dence limits f o r  the  predicted voltages range from 2 5 mv near the center 

The 95% confl- 

Of t he  design (125OC, 45% KOH, 30 psig)  t o  2 15 mv near the  extremities 

(lOO°C, 30% KOH, 0 psig and 15OoC 75% KOH, 60 psig). 
I 

2 The model does not give a good fit of the  data at 600-1000 ma/m . 
A t  these current densi t ies  the  estimated standard deviation (24  mv) is 

much higher than t h e  experimental error .  The 95% confidence limits 

are at l ea s t  

the extremities. 

15 mv i n  the center of the design and at l ea s t  - + 45 mv at 

A t  present, t h i s  does not seriously l imi t  the usefulness 

of the model since long term s t a b i l i t y  at these current densi t ies  

generally has not yet been demonstrated fo r  fue l  c e l l  electrodes. 

current density range i n  which the model i s  sa t i s fac tory  is  of much 

more immediate in t e re s t  for fue l  ba t te r ies .  

The 

Figures 3-1, 3-2, and 3-3 show voltages predicted for  AB-40 

electrodes at physically feasible  conditions w i t h i n  the  region 

10O-15O0C, 30-751 KOH and 0-60 psig,  at current densi t ies  of 100, 200 

and 400 ma/cm . These p lo ts  permit an estimate of t h e  voltage at any 

point i n  the region at KOH concentrations up t o  5% below the  

so lubi l i ty  l i m i t .  

po 1st ion. 

2 

2 Values at 300 ma/cm CM be obtained by l i nea r  in te r -  
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3.2.3 Effects of Operating Variables 

Figures 3-1, through 3-3 show also t h e  e f fec ts  of pressure, 

KOH concentration and temperature respectively on i n i t i a l  performance. 

These effects  are qual i ta t ively the same as were indicated previously 

(3)  by more l imited d i rec t  camparisions of t h e  experimental data. 

It can be seen t h a t  t h e  magnitude or even t h e  direction of the effect  

on c e l l  voltage caused by changes i n  each operating variable depends 

on t h e  levels o f t h e  other variables. This is  because the e f fec ts  of 

these variables on t h e  reversible emf ,  on t h e  various polarizations 

(activation, gas concentration, and electrolyte  concentration) and 

on c e l l  resistance are interdependent. The interactions of the  operating 

variables predicted by the  empirical model can be explained qual i ta t ively 

by fue l  c e l l  theory as discussed by A d a m ,  Brown, and Watson. (4) 

3.2.3.1 Pressure 

Increased pressure substant ia l ly  raises t h e  voltage at all 

levels  of the other variables (Figure 3-1). 

results from an increase i n  the reversible emf,from a decrease i n  

activation polarization, (caused by an increase in  the  exchange 

current) ,  and from a decrease i n  gas concentration polarization, 

( resul t ing from increased so lubi l i ty  of t h e  reactant gases i n  t h e  electro- 

ly te) .  

i n  pressure from 0 t o  60 psig is much greater than t h e  increase i n  

reversible e m f  (30 mv) , the reduction of polarization losses is  a 

substantial  par t  of t h e  pressure effect. 

Theoretically, t h i s  

Since the voltage improvement (50-130 mv) caused by an increase 

~~ ~~ 
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The magnitude of t h e  pressure effect increases with increasing 

An increase i n  pressure fram 0 t o  60psig increases the current density. 

voltage by 50-80 mv at 100 ma/cm2 and by 70-130 mv at 400 ma/cm . This 
is t o  be expected since the reduction of gas concentration polarization 

is more signif icant  at higher cur ren t  densit ies.  

2 

The magnitude of the  pressure e f fec t  diminishes samewhat with 

increasing pressure. 

are significantly higher, (by 15-30 mv) than at 30 psig. 

Nevertheless, the voltages predicted at 60 psig 

3.2.3.2 KOH Concentration 

Increased KOH concentration substant ia l ly  increases the  

voltage at nearly all levels  of the  other variables (Figure 3-2) . 
magnitude of t h i s  effect  decreases with increasing current density. 

Thus at 100 ma/cm2, the  voltage is 50-100 m v  higher at 60% KOH than at 

30% KOH and increases over concentration ranges up t o  5% below the  

so lub i l i t y  l i m i t .  

or  decreases with increasing concentration, depending on the  pressure, 

and ranges from 10 mv lover t o  60 mv higher at 60% KOH than at 30% KOH. 

This is t o  be expected qual i ta t ively *an the  opposing theore t iee l  effects 

of KOH concentration on c e l l  voltage. 

concentration lowers the vapor pressure and increases the  p a r t i a l  

pressures of the reactant gases. 

both by rais ing the reversible emf and by decreasing ect ivat ion polarization. 

Harever, at  concentrations above those which y ie ld  minhun r e s i s t i v i t y  

[30-50% KOH at 10O-15O0C (511 an increase i n  concentration increases 

The 

2 By contrast ,  at 400 ma/cm the voltage either increases 

On the  one hand, an increase i n  

This tends t o  increafse c e l l  voltsge, 



c e l l  resistance. 

current density. 

concentration t o  raise c e l l  voltage predominates a t  a l l  but the 

highest cab ina t ion  of current density (400 ma/cm*) and pressure (60 psig).  

This tends t o  lwer ce l l  voltage par t icular ly  e t  high 

Referring again t o  Figure 3-2, the  tendency of increasing 

It i s  of in te res t  t o  note t h a t  as t h e  pressure is raised there 

is less voltage improvement with increasing concentration. This is 

probably because a given increase in  KOH concentration raises the  reactant 

p a r t i a l  pressures re la t ive ly  less as t h e  t o t a l  pressure i s  increased. 

Thus, at 100°C, a rise i n  KOH concentration f r o m  30% t o  60% raises the 

reactant p a r t i a l  pressures by 130% [from 300 mm Hg t o  694 mm Hg (611 

at 0 ps ig  but only by 11% [ 3420 mm Hg t o  3814 mm Hg] at 60 psig ( 6 ) .  

60 psig,  and 400 ma/cm 

raise cell  voltage is  apparently diminished suf f ic ien t ly  so t h a t ,  at 

A t  

2 the  tendency of increasing KOH concentration t o  

concentrations above these yielding minimum resist ivity,  the  resistive 

ef fec t  predcminates and voltage decreases with increasing concentration. 

The concentration effect  increases w i t h  increasing temperature. 

This i s  t o  be expected because, at the  resul t ing higher vapor pressure, 

a given increase i n  KOH concentration i s  re la t ive ly  more effect ive i n  

ra is ing the  p a r t i a l  pressures of the  reactant gases. Furthermore, an 

increase i n  temperature lessens adverse resistive and/or diffusional  

effects i n  the electrolyte  as i t s  concentration i s  increased. 
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3.2.3.3 Temperature 

In the range 100-15OoC, temperature has l i t t l e  effect on 

t h e  voltage except at concentrations approaching the s o l d i l i t y  limits 

at 100-125°C, i.e., at 6045% KOH (Figure 3-3). 

loading electrodes t h e  principal effect  of increasing the  temperature 

i n  t h i s  range i s  probably t h e  reduction of polarization a s soc ia t cdv i th  

e lec t ro ly te  o r  gas diff’usion l imitations.  Thus, the m o r  advantage, 

fo r  i n i t i a l  performance, of increasing the temperature is the poss ib i l i t y  

of operating at higher KOH concentrations (Figure 3-2). 

With these high 

3.2 3.4 Hiaest I n i t i a l  Perf-ce 

Within the  region of operating variables the m o d e l  predicts 

t ha t  at a l l  current densit ies t h e  highest i n i t i a l  perfonmnce can be 

obtained at l 5 O o C  and 45-60 psig. 

highest performance at 100, 200, 300 and 400 ma/cm 

65-701 and 60451 ,  respectively. 

same current densit ies are hspec t ive ly  1.10 v, 1.04 v, 0.99 v and 0.95 v. 

These voltages w e r e  actually obtained, within 10 mv, i n  t he  experimental 

runs reported previously. 

The KOH concentrations yielding 
2 

are 75%, 70-75%, 

The maximum i n i t i a l  voltages at these 

These i n i t i a l  performances values predicted f o r  the AB-40 

electrodes are based on a matrix of 16-18 mil ACCO-I1 Asbestos. It is 

reasonable t o  assume t ha t  a d i f f e r e n t  matrix whose resistance is close 

t o  t h a t  of ACCO-I1 Asbestos should give very nearly the saute i n i t i a l  

performance. 

increase the  voltage by as much as 30 mv at 100 ma/- 

100 mv at 400 ma/= . 

It is estimated t h a t  a thinner  less r e s i s t i ve  matrix might 
2 and as much as 

2 
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3.2 .4 Ractian of Water Remuvet2 a t  Each Electrode 

The ef fec t  of the fraction of water removed at  each electrode 

on the i n i t i a l  performance w a s  investigated at a condition perferred 

f o r  l i fe- tes t ing,  i .e.,  100°C, 0 psig and 50% KOH. 

Asbestos) was t h e  same as t h a t  used t o  determine the effects  of temperature, 

pressure, and KOH concentration on i n i t i a l  performance. 

Figure 3-4 shows the e f fec t  of the  fraction of water removed 

The data are for  second 

The matrix (ACCO-I1 

at  the  hydrogen electrode on i n i t i a l  voltage. 

polarization curves. 

increased continuously with the increasing fraction of water removed 

at  the hydrogen electrode. 

the  voltage was 40 mv higher at 100 ma/cm 

than when all water was removed on the oxygen side. 

the voltage w a s  approximately constant, within 20 mv, at  any fraction. 

A t  600-1000 ma/cm 

range 0-1/3 and then decreased markedly i n  the range 1/3-1. 

1000 ma/cm2, the voltage w a s  unstable when all water w a s  removed at the 

hydrogen electrode. 

A t  current densit ies up t o  200 ma/cm2 the voltage 

With all water removed on the hydrogen s ide,  
2 2 

and 30 mv higher at 200 ma/cm 
2 A t  300-400 ma/cm , 

2 the voltage vas approximately constant i n  the fract ion 

A t  800- 

3.3 Life-Testing 

Life-testing i n  2-inch c e l l s  is now conducted i n  new test  

f a c i l i t i e s  within the Stamford Laboratories. During the current 

reporting period three l i f e  tests were moved t o  these f a c i l i t i e s  a f t e r  

they had been s tar ted.  
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L i f e  tes ts  were run at 100°C wi th  asbestos matrices (20-25 m i l s )  * 

2 at current densit ies of 100-400 ma/cm and pressures of 0-15 psig. 

Acceptable voltage s t a b i l i t y  w a s  achieved fo r  more than 1200 hours a t  

2 current densi t ies  up t o  300 ma/cm . 
with a PTFE-Asbestos matrix and at 15OoC with porous PTFE matrices. 

Table 3-3 summarizes all tests. 

change of c e l l  voltage and resistance with time. 

Tests were a lso  conducted at 125OC 

Figures 3-5 through 3-10 show the 

3.3.1 Tests at 100°C 

order of  

3.3.1.1 

L i f e  tes ts  at 100°C and SO$ KOH are discussed below i n  the 

increasing current density. 

2 

2 

Tests at 100 m a / c m  

Runs at 100 ma/cm and atmospheric pressure are shown i n  

Figure 3-5. Tests employing ACCO-I Asbestos (TLT-2-322) and Fuel Cell 

Asbestos (TLT-2-324) as the  matrix have passed contract specifications 

fo r  stable operation. 

1480 hours at a voltage decline rate of 1.7 mv/100 hours. 

Both of these tests have run at 0.92-0.94 v. fo r  

A test employing ACCO-I1 Asbestos as t h e  matrix (TLT-2-323) 

ran stably for  640 hours at a voltage level of 0.90-0.92 v and a voltage 

decline rate of 2.5 m v / l O O  hours. 

ture controller failure. Quinterra Asbestos has a l s o  yielded stable 

performance for  429 hours at 0.94 v wi th  no decline i n  voltage (TLT-2-354). 

The first three of the tes ts  described above were run on 

The run w a s  terminated by a tempera- 

humidified gases w h i l e  the  fourth w a s  run on dry gases. Thus e i ther  gas 

condition appears sui table  fo r  stable operation at 100 ma/cm . 2 
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2 A t es t  was run at 100 ma/m 

PTFE instead of the usual 25% (TLT-2-314). 

with electrodes containing 15% 

The matrix w a s  ACCO-I 

Asbestos. Although the c e l l  resistance w a s  normal and remained nearly 

constant, the i n i t i a l  voltage (0.902 v) was low and the voltage declined 

rapidly (25 mv/100 hours). The test was terminated after 187 hours 

because of a cross-leakage of gas. 

2 3.3.1.2 Tests a t  200 ma/cm 
2 L i f e  tests at 200 m a / c m  are shown in  Figure 3-6. T e s t  

TLT-2-327 w a s  run a t  atmospheric pressure with ACCO-I1 Asbestos as the 

matrix. 

maximum of 0.835 v during the f i rs t  160 hours. 

The i n i t i a l  voltage (0.804 v) w a s  very low and rose t o  a 

Since the maximum voltage 

w a s  s t i l l  very low the run w a s  terminated after 184 hours. 

voltage level was probably caused by overwet electrodes ( i n  t h i s  tes t  

the  electrodes were loaded with e lec t ro ly te  t o  about 44% of t h e i r  

The low 

weight compared t o  the 

Several runs 

I n  a test  with ACCO-I1 

(0.904 v) climbed t o  a 

more normal 20-30%). 

were made at 200 ma/cm 

Asbestos (TLT-2-3171, the  i n i t i a l  voltage 

maximum of 0.923 v during the  first 24 hours. 

2 
and 15 psig on dry gases. 

Thereafter, the  voltage decline rate w a s  somewhat high (5.5 mv/100 hours) 

although t h e  c e l l  resistance remained essent ia l ly  constant. 

the  voltage dropped abruptly and the run w a s  terminated. 

the c e l l  revealed tha t  the electrodes and matrix were excessively w e t .  

A t  451 hours, 

Disassembly of 

A t es t  at 15  psig w a s  set up with a Fuel Cell Asbestos matrix 

(TLT-2-340). I n i t i a l  voltage w a s  0.925 v. A t  d i f ferent  periods during 

t h i s  test  the gas flows were s e t  t o  maintain e i t h e r  50% o r  46% KOH i n  
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the ce l l .  

voltage decline rate was zero and 4.8 mv/lOO hours during separate periods 

of 500 hours and 450 hours respectively. 

declined very rapidly, 30-85 mv/lOO hours during two separate periods. 

The voltage decrease was accompanied by a marked rise in c e l l  resistance 

indicating tha t  loca l  dry ing  probably occurred at one o r  both of the 

electrodes. 

As shown i n  Figure 3-6, the tes t  ran s tably at 46% KOH. The 

However, at 50% ICOH the  voltage 

2 3.3.1.3 T e s t s  at 300 m/cm 
2 Figure 3-7 shows l i f e  tests at 300 ma/= with ACCO-I Asbestos. 

figure 3-8 s h m  t e s t s  with ACCO-I1 Asbestos and Fuel C e l l  Asbestos. 

A t  t h i s  high current density, ACCO-I Asbestos gave much more stable 

operation than either of the other tvo matrices. 

With ACCO-I Asbestos, test TLT-2-335 has passed contract 

speciflcations for stable operation. 

at 0.864.88 v for 1242 hours at a voltage decline rate of only 

1.5 m v / l O O  hours. 

previously(2) for  the same operating conditions (4.2 mv/ lOO hours f o r  

1050 hours ) . 

The test has run, on dry gases, 

This decline rate is below the lowest rate reported 

T e s t  TLT-2-35 w a s  run under the same conditions at TLT-2-335 
2 except t h a t  t he  polarization curve was run out t o  900 ma/= pr io r  t o  

the t e s t .  

and a voltage decline rete of 2.5 mv/lOO hours. 

the voltage decline rate increased t o  9 m/lOo hours. 

rate wa8 7 -5  mv/lOO hours . 

- 
During the first 440 hours, the  test ran stably at 0.86-0.87 v 

Fran 440 t o  1321 h m ,  

The overall decline 

I n  some runs with ACCO-I Aebestos, gas cross-leakage occurred 

Thus tests rnT-2-331 and through the  matrix after some period of time. 

-329 9 which were run under the same conditions es TLT-2-225, developed 
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cross-leakage a t  18 and 137 hours respectively and were terminated. 

Test TLT-2-337 ran with both i n l e t  gases humidified at 45OC. 

427 hours the performance w a s  extremely s table  at 0.87 v. 

During 

Cross- 

leakage then developed and the  t e s t  w a s  terminated. 

TKO tests were run with ACCO-I Asbestos under conditions 

substant ia l ly  different  from those described above. I n  both runs t he  

oxygen stream w a s  essent ia l ly  dead-ended, i .e. ,  the  ex i t  oxygen stream 

was a negligible f ract ion of the ex i t  hydrogen stream. 

TLT-2-351) employed two 21-mil sheets of the matrix. 

voltage (0.872 v) w a s  within the  range usually obtained w i t h  one sheet. 

However, during 478 hours the  voltage decline rate was high (13 mv/100 

hours). 

One test 

The maximum 

The other t e s t  (TLT-2-355) employed a matrix containing 20% 

binder instead of the usual 10%. 

(0.86-0.88 v) w a 8  the same as with nonnal ACCO-I Asbestos. 

During 426 hours, the voltage 

The voltage 

decline rate  (5.0 mv/lOO hours) was s l i g h t l y  above t h a t  considered 

s t ab le  (4.2 mv/100 hours). 

ACCO-I1 Asbestos (20 mils) was employed as the matrix i n  one 

test on dry gases (TLT-2-330). 

481 hours the voltage decline r a t e  was  high (10 mv/lOO hours) 

The i n i t i a l  voltage w a s  0.875 v. During 

Tests with F’uel C e l l  Asbestos (20-22 m i l s )  have not run s tably 

at  300 ma/=*, either on dry gases or  on humidified gases (TLT-2-336, -347, 

-352, and -353). 

maximum voltages obtained with ACCO-I Asbestos (0.864.88 v). 

Maximum voltages (0.83-0.85 v) were lower than the 

The 

voltage decline rate was not s ign i f icant ly  affected by the  humidity of 

the  i n l e t  gases. A t  an i n l e t  H2/02 r a t i o  of 1.0, the voltage decline rates 



- 39 - 

fiere 20-32 l w / l O O  hours regardless of whether the  inlet gases v e e  dry 

or humidified a t  45-55OC. 

effect on s t ab i l i t y .  

dead-ended ( i n l e t  H2/02 = 20) yielded a much greater  voltage decline rate 

(90 mpr/lOO hours) than did aa equal flav split (TLT-2-352). 

The gas flow r a t i o  appeared t o  have a greater 

Thus operation with the  oxygen stream essent ia l ly  

2 3.3.1.4 T e s t s  at 400 ma/- 
2 

A l l  tests  at 400 ma/- emplopd ACCO-I Asbestos M the  matrix 

2 since it alone gave stable performance at 300 ma/= . 
KOH loading was 3.1 g / g  dry matrix. 

In all runs t he  

RCSUl tS  are shown i n  Figure 3 4 .  

T e s t  TLT-2-297 vas run cm dry gases v i t h  m o s t  of the water 

removed at t h e  orygen electrode. 

e r r a t i ca l ly ,  mostly in the range 0 -81-0.84 V. 

the voltage (0.83 v) WM only 11 EN below t h e  maximum voltage of t he  

test. 

such as electrode deterioration, was occurring. 

was transferred t o  the new t e s t ing  facilities. 

properly and WLLS terminated. 

During 460 houra the voltage fluctuated 

Revertheless 8% 460 hours, 

This voltage behavior indicates t ha t  no irreversible phenmenon, 

A t  460 hours the  cell  

The tes t  did not restart 

T e s t  TLT-2-304 w a s  also run on dry gases but v i t h  most of the 

w a t e r  removed at the hydrogen electrode. 

of overdrying the electrode areas aqacen t  t o  the i n l e t  gas ports, t he  

i n l e t  gases w e r e  made t o  impinge on t he  modified gasket before flowing 

p a r a l l e l  t o  the electrodes. The voltage fluctuated much less than i n  

TLT-2-297. 

11 m v / l O O  hours. 

of gas and the  test was terminated. 

To minimize the  poss ib i l i ty  

During 800 hours the  o v e r a l l  voltage decline rate wa8 

The decline ra te  then accelerated due t o  cross-leakage 

However, during 320 hours (220-540 



hours to ta l  elapsed t i m e ) ,  the  voltage w a s  stable at a decline rate of 

only 1.2 mv/lOo hours. Voltage s t a b i l i t y  for  t h i s  length of time shows 

that even a t  400 ma/cm the  mass t ransfer  rates of reactant gases and 

product water within t h e  c e l l  are suff ic ient ly  rapid fo r  stable 

operation with th i s  electrode-matrix system. 

2 

Test TLT-2-303 w a s  run with the  i n l e t  hydrogen humidified at 

45OC and t h e  oxygen essent ia l ly  dead-ended. 

voltage decline rate w a s  10 mv/100 hours. 

During 1340 hours the 

The lowest overal l  voltage decline rate obtained t o  date w a s  

7 mv/lOO hours f o r  530 hours (TLT-2-298). 

gases were humidified at 40OC. 

t o  cestart properly after it w a s  transferred t o  the  new tes t  f ac i l i t y .  

In  t h i s  tes t  both i n l e t  

The run w a s  terminated when it fa i led  

R u n s  were made with electrodes containing 15% PTF'E instead 

of t he  normal 25% (TLT-2-312 and -313). 

prewet electrodes but could not be brought up t o  the operating current 

density because the electrodes were flooded. 

i n i t i a l  and maximum voltage (0.774 v) and a very rapid voltage decline 

and w a s  terminated. 

TLT-2-312 was star ted with 

TLT-2-313 had a l o w  

With the  exception of the ear ly  par t  of TLT-2-303, the per- 
2 formance declines in  the tests at 400 ma/- 

rise i n  ce l l  resistance. 

were not accompanied by a 

Although acceptable voltage s tab i l i ty  has not yet  been 

achieved at 400 ma/cm2, it cannot be concluded tha t  stable operation is 

improbable at  t h i s  current density because t h e  overal l  voltage decline 

rates obtained thus far (7-11 mv/100 hours) are not excessiwly high. 



Furthermore, only l imited canbinations of inlet  gas flow r a t i o  and 

humidity have been employed. 

320 hours i n  TLT-2-304, offers  promise tha t  s t a b i l i t y  can be achieved 

f o r  longer periods. 

The stable operation demonstrated during 

3.3.2 T e s t 8  at 1 2 5 O C  

Figure 3-10 shows tests at L25OC and 60% KOH. 

T e s t  TLT-2-300 was ruu with an ACCO-I1 Asbestos matrix at 

100 ma/m 2 The i n l e t  gases were humidified. A s  i n  previous tests (2,3) 

with asbestos matrices at 125'C, the voltage declined very rapidly 

(60 w/100 hours during 336 hours) T e s t  TLT-2-301 employed Q 

P"E-Asbestos matrix and vas run under the  same conditions at TLT-2-300. 

The voltage declined at an accelerated rate during 425 hours. 

In both tests the  voltage declines were accanpaaied by a 

steady rise i n  c e l l  resistance. This has been obsemed i n  all previous 

tests with asbestos-containing matrices at 1 2 5 O C ,  though not i n  general 

at  lOO'C, and is probably caused by slaw corrosion of the matrix i n  KOH. 

3.3.3 T e s t s  at  150'C 

Two runs w e r e  started at 15OoC and 70% KOH with 2 0 4 1  

unetched porous PTFE (Chemplast 233 WS) as the  matrix. 

0.015% of FC-128 (34 Coo) as a wetting agent for the  PTPE. 

(TLT-2-321) w a s  run on dry gases while the other (TLT-2-320) was run on 

gases hunidified at 5 5 O C .  

of gas and were terminated, 

The KOH contained 

One test 

Both t e s t s  immediately developed cross-leakage 



Test TLT-2-350 employed a 95/5 ceria-PTFE matrix at 15OoC 

and 65% KOH. 

i n i t i a l  performance and short  term tests (Section 3.1.1). 

measurements taken at 25 hours of operation showed t h e  KOH concentration 

at t h e  hydrogen and oxygen ex i t  t o  be 63.5% and 66.0% respectively. 

During 42 hours of operation, the c e l l  resistance increased 5-fold and 

t h e  voltage decline rate was  severe (>200 mv/lOO hours). 

tests with thinner ceria-PTFE matrices are planned. 

The matrix (35 m i l s )  was  thicker than those used in  

Dew point 

Additional 

3.3.4 KOH Loading and Voltage S tab i l i t y  

The dependence of l i f e  tes t  s t a b i l i t y  on KOH loading is  of 

in te res t .  

were loaded with 50% KOH. 

e lec t ro ly te  fo r  one t o  three minutes and then blot ted t o  obtain the  

desired loading. Table 3-4 gives the  matrix and electrode loadings 

and the t o t a l  loading for  most of the tests run with asbestos matrices 

during t h i s  period. 

In nearly all tests, the electrodes, as w e l l  as the  matrix, 

The electrodes were vacuum immersed i n  the 

The s t a b i l i t y  of each tes t  is  a lso  l is ted.  

The KOH loading in to  the electrodes w a s  normally 18-26% of the 

dry electrode weight end w a s  evenly dis t r ibuted between anode and cathode. 

In  most runs the electrode KOH w a s  35-50% of the  t o t a l  KOH loaded in to  

the c e l l ,  which w a s  4-8 grams. If the ceUwere assembled with dry 

electrodes,  the  m a x i m u m  amount of KOH t h a t  could be loaded v ia  the  

20-25 m i l  matrix alone would be approximately 6 grams. 

With each type of matrix, the runs shown i n  Table 3-4 w e r e  

made at various combinations of current density,  gas flow ra t io ,  and 

gas humidity which do not permit t h e  dependence of performance s t a b i l i t y  
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on KOH loading t o  be determined direct ly .  Nevertheless, stable operation 

appears t o  have occurred more frequently i n  the  higher ranges of t o t a l  

KOH loading. 

above six grams (6.05-8.74 g) have run s tably o r  nearly stably at 

100-300 ma/= f o r  427-1482 hours (TLT-2-322, -337, -335, -323, 

-340, -324, and -354). 

voltage. 

below s i x  grams (4.28-5.45 g) w e r e  unstable (TLT-2-329, -331, -330, -336, 

-347, -352, and -353). 

(TLT-2-98) had a l o w ,  r i s ing  voltage. 

Thus, eight of the nine tests which had a t o t a l  KOH loading 

-317, 
2 

The ninth test (TLT-2-327) ran with a low, rising 

By contrast ,  seven of nine tests which had a t o t a l  KOH loading 

One tes t  (TLT-2-35) w a s  stable. The ninth tes t  

The data indicate t h a t  t o t a l  KOH loadings of 6-8 grams or 

perhaps higher are suitable for  stable operation with ACCO-I Asbestos 

at current densi t ies  up t o  at least 300 ma/cm . 
sufficient t o  conclude whether lower loadings are unsuitable fo r  ACCO-I 

Asbestos since two tests at lower loadings w e r e  unstable (TLT-2-329 

and -331) while one (TLT-2-355) was nearly stable. 

2 The data are not 

Total loadings above s i x  grams appear t o  be suitable a l so  fo r  

stable operation with ACCO-I1 Asbestos, Fuel C e l l  Asbestos and Quinterra 

Asbestos a t  100-200 ma/cm . Lower loadings were not employed. Tests 

w i t h  ACCO-I1 Asbestos and Fuel Cell Asbestos at 300 m a / c m  have not 

run s tab ly  a t  loadings below s ix  grams. 

been investigated. 

2 

2 

Higher loadings have not yet 
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3.3.5 KOH Concentration Gradient and Voltage S tab i l i ty  

During l i f e  t e s t ing ,  KOH concentration gradients develop within 

the matrix and electrodes. 

diagonally through the  matrix f'rom the hydrogen e x i t  at one end of the 

cell  t o  the  oxygen e x i t  at the other end. The effect of this gradient 

on long term stability and its dependence on operating variables are 

of in te res t .  

An "overall" concentration gradient extends 

The magnitude of the overall KOH concentration gradlent waa 

determined in some runs at 100°C which employed various types of 

asbestos matrices of equal thickness (20-25 mils). 

used t h e  same i n l e t  H2/02 r a t i o  (1.0) at gas rates set t o  maintain 50% 

KOH i n  the  ce l l .  

the inlet gaaes were either dry o r  humidified at 45OC. 

A l l  of these runs 

2 The current density ranged irap 100-300 ma/= and 

The KOH concentration at each gas exit was detexmined 

the humidity of the exit gas stream by assuming w a t e r  vapor equilibrium 

between e lec t ro ly te  and gas. 

removing water frap the gas in a Drferite tube for 1 v2-4 hours cw fran 

a dew point messurcment. 

separate measurements generally agned within 3 wt. %. 

The humidity was measured either by 

The KOH concentrations determined  fro^ these 

Table 3-5 canpares KOH concentration gradients with overal l  

voltage decline rates. The concentrations, detennined from vater 

col lect ion measurements, were i n  the range 42.5-50.5% at the hydrogen 

exit and 50.5-57.51 at  the oxygen e d t .  

gradient ranged from 0.545% KOH. 

The overall concentration 

In same runs concentrstiona w e r e  
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C e l l :  'Rro-Inch 
Electrodes : AB-40 
%mperature: 100°C 
Inlet H2/02 Ratio: 1.0 
Matrix Thickness: 20-25 M i l s  

TLT 
lo. 

2-335 

- 

2-305 

2-330 

2-336 Fuel C e l l  Asbestos 

TAX23 3-5 

KOH Concentration Gradient and Voltage Stabi l i ty(apb ) 

Inlet Cas 
Condition 

Dry 

Dry 

2-322 ACCO-I Asbestos Humidified 100 
at 45°C 

2-323 ACCO-If Asbestos Humidified 100 
at 45°C 

2-324 Fuel Cell  Asbestos Humidified 100 
a t  45°C 

---- --.. --- - ----- 
2-337 ACCO-I Asbestos Humidified 300 

at 45°C 

2-347 Fuel C e l l  Asbestos Humidified 300 
at 45°C 

-- 

Overall  
Voltage 

Decline Rate 
~m/lOO Hrs.\C) 

1.5 

7.5 

10 

22 

_-- -.-- 
1.7 

2.5 

1 

I 1.7 

! 
4 0.5 

-4 . .-- 

32 

Total  
:lapsed 
Time 
(Hrs. 1 

93 
260 
452 
624 
787 
910 
978 

830 
950 

19 
44 

164 
330 
503 
695 

980 
858 

1051 

165 
257 
428 
621 

576 
, 742 

575 

* -  

574 
741 

217 

50 

( a )  

( b )  

( c )  

Gas f l o w  r a t e s  se t  t o  maintain 50$ KOH i n  c e l l  

Data obtained by collecting water from c e l l  e x i t  gases for 1 l / 2  - 4 hours 

During total  elapsed time ahown in Table 3-3 

Equilibrium i 
KOH Conc. ! KOH 

( 4 6 )  A t  Conc. 
Or !Gradient 

45.5 52.5 7.0 
47.5 52.5 

46.5 54. 
46.5 53.5 7.0 

45.5 53. 7.5 
45.5 53. 7.5 
45.5 53.5 8.0 
45. 54.5 9.5 
45.5 55. 9.5 
45. 54.5 9.5 
44.5 54.5 10.0 
45. 53.5 8.5 
44. 54.5 i 9.5 

I 

44.5 53.5 ( 9.0 
42.5 57.5 J 15.0 
43.5 56.5 I 13.0 
45.5 54.5 9.0 

_._ _-_I_- 

50.5 52. ' 1.5 
49. 50. 1.0 

47. 50. 3.0 
47.5 50. 2.5 - 
48. 51. 3.0 

45. 53.5 8.5 

5.0 
5 .o 
5 .o 
5.5 
4.0 
3.0 

7.5 

4 of 
Product 
Water 

Collected 

102. 
99.8 
99.4 
100 .o 
100.0 
100.0 
101.0 

99.5 
104 

102 
101 
101 
101 
99.5 
99 
100.5 
100 
101 

101 
105.8 

' 102 
100 

, .  

111 
107 

88 

126.5 
111 i- . 

94 

111 
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dttemined at more than one t ime.  

concentration gradient d i d  not change by more than 2-3% KOH during m o s t  

of the  operating period. 

In all of those but one, the 

The concentration gradient increased with increasing current 

density, less so with ACCO-I Asbestos than with Fucl C e l l  Asbestos. 

With A C C S I  Asbestos, the gradient increased fha 1.0-1.5% at 100 ma/= 

t o  3.0% at 300 ma/m (m-2-322 snd -337). 
2 2 gradient was 2.5-3.0% at 100 =/em and 8.5% at 300 ma/= 

2 

2 With Fuel C e l l  Asbestos t h e  

(TLT-2-324 and 

-347). 

A t  a given current density and i n l e t  gas humidity, the  ccmcen- 

t r a t i o n  gradient increased with increasing matrix density In the  order 

ACCO-I Asbe8to~, ACCO-I1 Asbestos, and he1 

was more marked at higher current density. 

humidifled gases, t he  gradient was s l i g h t l y  

C e l l  Asbestos. The increase 

Thus, at 100 -/an2, with 

higher with Fucl C e l l  Asbestos 

(2.5-3.0s) than with the less dame ACCO-I and ACCO-I1 Asbestos (0.5-1.5%) 

(TLT-2-324-323 and -322) . 
gradient increased Raaa 3.0% with ACCO-I h b e r t o a  t o  8.5% v i t h  Fuel C e l l  

Asbestos ('1211-2-335, -305, -330 and -336). Likewise, at 300 =/em with 

dry gases, the  gradient was 3.0-7.5% with ACCO-I Asbestos, 7.5-10.0% with 

ACCO-I1 Asbestos and 9 .O-15 .O% with F'uel C e l l  Asbestos (!CLT-2-33? and -347). 

2 A t  300 ma/- with humidified gases t h e  

2 

Humidificstion of both in l e t  gases at 45OC reduced the  KOH 
2 concentration gradient at 300 ma/= . With ACCO-I Asbestos the  decrease 

YBS (3.0-7.51) t o  3.0% (TLT-2-335, -305 md -337). With -1 

C e l l  Asbestos t h i s  decrease was from 9.0%-15.0%) t o  8.5% (TLT-2-336, 

and -347). 
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2 Long term performance w a s  s tab le  at 100-300 m a / c m  when the  

overa l l  KOH concentration gradient was lox. 

shown, the f ive  whose gradients were mostly below 6-7% KOH ran stably 

at voltage decline ra tes  of 0.5-2.5 mv/lOO hours f o r  periods of  

427-1482 hours, (TLT-2-335, -322, -323, -324, -337). 

four t e s t s  whose concentration gradients were 7-155 ran unstably at 

voltage decline ratea of 7.5-32 mv/100 hours, (TLT-2-305, -330, -336, 

Thus, of the nine t e s t s  

By contrast  the 

-347). 

The data help t o  explain why ACCO-I Asbestos has given s tab le  

operation a t  300 ma/cmz while ACCO-I1 and Fuel C e l l  Asbestos thus far  

have not. 

a t  300 ma/- 

t r a t i o n  gradient can be reduced t o  the  l o w  l eve ls  a t ta ined with ACCO-I 

Asbestos. 

The results indicate  t h a t  s tab le  operation might be achieved 

with ACCO-I1 o r  Fuel Cell Asbestos i f  the overal l  concen- 2 

3.3.6 Water Balance 

Cell water balance data, obtained from water col lect ion 

measurements, are shown i n  Table 3-5. 

water removed by t h e  ex i t  gas streams w a s  generally 99-101 f o r  the  

t e a t s  run with dry gases. 

were also determined. 

appears t o  be more widely scattered. 

water entering the  c e l l  m a k e s  the  determination l e s s  accurate than f o r  

The percentage of c e l l  product 

Two s l i g h t l y  higher percentages (104 and 106) 

With humidified gases t h i s  percentage (88-126) 

However, the addi t ional  fac tor  of 

dry gases. 



4. LAE&;ECELtTES!l!IX 

Acceptable voltage s t a b i l i t y  of 6” x 6” electrodes at a 

current density of 300 ma/cm2 was obtained at 100°C (Run 7556-153) 

f o r  a =rid of 7bO hours. 

with 20 m i l  ACCO-1 asbestos as the matrix. 

50s end the presauxe, 0 psig. 

that of a bat tery system with a recycle hydrogen system md dead-ended 

axygen. 

through Drierite t o  remove water and then thruugh Ascarite t o  =move 

as such trace Cog as possible. The hydrogen stnzam was then spsrged 

through a water saturator  at 55°C. 

at any point on the Wrogen side of the cell the  Q)H concentration did 

not exceed 555, i.e., was at least lO$ bel- the so lub i l i t y  lmt. 
During most of the run the oxygen e n t e h d  the  cell dry and w h i l e  not 

actual ly  dead-ended, removed only 19 of the  product-water. 

were prewet. 

a polarization curve out t o  1000 ma/cr2. 

i n  voltage a t  300 ma/cm2 usua l ly  associated with t h i s  procedure was 

not obtained. 

The run was made i n  the f la t -p la te  c e l l  

The KOH coacentratiaa ma 

The removal of product vater sikalsted 

Both the hydrogen md oxygen inlet 8tn~crrrr u e h  first passed 

In principle t h i s  ins& tha t  

The electradee 

The run was started a t  300 ma/cm2 withaat first rnnning 

nus the 10-20 mv e-epcnt 

The time his tory of the t e a t  is  shown i n  Figure 4-1. The 

i n i t i d  voltage was 0.863 V. me voltage rose t o  a ssaxiama of 0.879 v 

within two hours and then retwmed t o  0,863 v within the tex t  50 hours. 

During the next 380 hours the voltage was stable within the limits 

0.8574.867 Y. 

0.6-0.7 milliohms, 

tubes were replaced by fresh oms. The resul t ing 30-second interrnpt ian 

i n  each gas flow increased the voltage t o  0.886 v with no change in  c e l l  

C e l l  resistance was e s s e n t i w  constant i n  the 

A t  a t o t a l  elapsed time of 430 hours, the Ascarite 
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msistance. 

During ttre following 75 hours, the voltage declined slightly f r a  0.857 

t o  0.853 V. A t  t h i s  point the amount of product-uater reunnd f r a  the 

q g e n  side was reduced from 1% of the total t o  zero by sparging the 

oxygen through water a t  23-24.C. 

f l o w  increased the voltage t o  0.871 v. 

l a te r  the voltage was 0.854 v. Thus, m e r  a totrl ehpsed tire Of 7 b  

hours the voltage YBS 9 mv belar the initial voltage and the cnex=all 

decline rate was 1.2 t v / l O O  hours. 

This voltage boost was dissipated during the next 70 hours. 

The moaentary interruption i n  oxygen 

Oee handred and sixty hours 

This overall decline rate vas considernbly h e r  than that of 

a previaus run (7556-23), at 3KK) as/m2 ( l ~  m/u)o hours) . This appears 

t o  bear out indication f r a  Run 7556-23 that a higher inlet  hydrogen 

humidity and a decrease i n  the alnmdy seal1 aoan t  of water removed on 

the oxygen side improves lcmg tern stability. 

streams through Ascarite is another possible factor, since t h i s  had not 

been done i n  Run 755643. 

Scrubbing of both gss 

Prcm m-800 hcmrs the voltage decreased frm 0.854 v t o  

0.84% v. Pros 80043% hours the voltage declined rapidly t o  0.816 v. 

The cause was found t o  be w e t t i n g  of the c e l l  due t o  an inadvertent 

rise in the temperatun of the hydrogen saturator f r a  55'C t o  61.c. 

The temperature r ise wa8 not readily apparent because of a fisalty them- 

couple. 

voltage t o  0.832 v for  24 hours. 

984 hours and then rose t o  0.814 v at lo00 hours. Thus, the prforagace 

did not recover completely from the effect of ovenretting. 

balance measurements made at 1000 hours showed that the oxygen electrode 

was aver-wet, i .e . ,  the KDH concentration a t  the oxygen exit  was b$. 

Restoration of the original  saturator temperat- increased the 

The voltage declined t o  0.803 v at 

Water 



/- 

The concentration at the hydrogen ex i t  was so$. 
the oxygen side, the oxygen vas then fed dry and at an e x i t  ra te  

(9 cc/min) three times t h a t  used during the t e s t .  

the  voltage rose t o  0.851 v. 

voltage after 740 hours was not caused by any cross-leakage of gas. 

The run was then terminated. 

In  order t o  dry out 

Within 1 5  minutes 

This confirmed t h a t  the decline i n  

Inspection of the electrodes showed no serious erosion of 

platinum despite the high hydrogen flow ra te .  

strongly t o  the hydrogen electrode but hardly at a l l  to the oxygen 

electrode. Small amounts of the  matrix had penetrated through the 

hydrogen electrode. 

tward the end of the t e s t .  

slightly discolored. 

e lectrolyte .  

ports contained sane so l id  e lectrolyte .  

highly discolored. 

The matrix adhered very 

This may have contributed t o  the voltage decline 

The gold-plated spacer-screens were only 

The hydrogen spacer-screens contained some sol id  

I n  each face plate ,  approximately l5$ of the i n l e t  gas 

The oxygen face plate  was 

Despite the decline i n  voltage after 740 hours the t o t a l  voltage 

decline (49 mv) during 1000 hours passed contract specifications fo r  

s table  operation. 
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5.  FtmJREwom 

Work for the next quarter is planned fur t he  follcwing tasks: 

I 1. Corrosion data  w i l l  be obtained on asbestos matrices i n  

KOH at 100°C and on the ceria-- matrix at  150'C. I 
I 
I 

I 
I 2. S m a l l  C e l l  LifeJfestiaq 

I 
Life tests at atmospheric preasure which are running stably 

wi l l  be continued beyo* 1200 hours. Additional tests will be s t a r t e d  

et 100°C and 100-300 -/a2 w i t h  asbestoe matrices and at l25OC with 

the ceria-PTFE matrix. 

Work on four test s ta t ions fo r  testing a t  pressures above 

atmospheric will be cmrpleted. Runs will be mude with Fuel C e l l  hbe6t08 

and Quinterra Asbestas 88 t h e  matrix a t  100.C, 45 psig and 100-200 ma/cm2 

am3 with the cerisSTFE matrix a t  l25OC, 45 pgig snd 100 -/a2. 

3. Large Cell T e s t i q  

Work on three test station6 far life-testing under presaare 

will be canpleted. 

with Fuel C e l l  Asbestos and Quin tem Asbestos matrices. 

Runs will be made a t  100°C, 45 psig a& 100 ma/cra2 
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Table I 

Coefficients for Direct Voltage Model 

Coefficient 

bo 

b l  

b2 

b3 

b4 

b l l  

b22 

b33 

b44 

b l2  

b13 

b14 

b23 

b24 

b34 

b l l l  

b222 

b l l2  

b l l 4  

b221 



APPEADIX 

Table I 

(Continued ) 

Value at  
Current Density ( ma/cm2) of: 

Coefficient 100400 600-1000 

b332 -. 00ooq747 + .00018620 

b334 - .00060917 + .00034803 

b441 -. ooog7832 + .040607966 

b442 - .00781642 + .OO419566 

b124 + . 00314040 +. 00440642 
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Table II 

Coefficients far Voltage Equation of 

Indirect Voltage Model 

V a l u e  at 
Current Density (ma/ an2) of: 

Coefficient 

bo 

b l  

b2 

b3 

b4 

b5 

b l l  

b22 

b33 

b44 

b55 

bl2 

b13 

bl4 

b15 

b23 

b24 

b25 

b34 

b35 

b45 
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Table I11 

Coefficients for Resistance Equation of 

Indirect Voltage Model 

Coeffieient 

do 

d l  

d2 

(33 

d l l  

d22 

a33 

d 12 

d l3  

a23 

Value 

+. 01833 

+ .001.24824 

-.00130640 

-.00086126 

+ ,00295805 

+ . OO13W13 
+ . ooO84710 
+ .00171394 

- .00225834 

-.00108334 
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